Exploring Mathematical and Computational Concepts for the STEM Education in Colleges Vladimir V. Riabov

Professor of Computer Science \& Mathematics, Rivier University, Nashua, NH, USA, vriabov@rivier.edu

Some General Principles:

- Embrace a "Holy Curiosity" of students;
- Motivate, but not drill students;
- Analyze from complexity to simplicity;
- Search for practical applications.

Part 1: Motivational Case Studies in Introductory Math Classes and Clubs

- Restore Digits in	- Factor Analysis of
Calculations:	Large Numbers:
$*$$* * *$ Prove that any six-digit $\times * 1 * *$ number, which has the same three first and last digits (written in the same $+* * * 1 *$ order), has factors $\frac{* * * 1}{8 * * 4 * *}$ (divisors) of 7, 11, and 13.	

- Find the number of 0 's in the expression:

$$
1 \times 2 \times 3 \times \ldots \times 98 \times 99 \times 100
$$

- What is the last digit of the number $25975927[\bmod (10)]$? (Try to calculate 7^{N} at N >18 with MS Excel ${ }^{\text {TM }}$. Why " 0 "?).
- Explore primes and Modular Arithmetic! Learn more about Galois fields, Euler's totient function, Fermat's Little Theorem...
- Study the RSA Public-Key encryption algorithm and message digital signatures.
- Link to other disciplines: Explore linguistic text properties in deciphering ciphertexts. \quad

Part 2: Math and Computer Graphics
Based on the human perception of light (3 eye cone sells sensitive to red, green, and blue), the RGB color model [1] allocates 24 bits for each pixel to represent $2^{24}=$ 16,777,216 different colors. Jython programs [1] can be used for manipulating with image colors, creating a negative (Fig.1), reducing red-eye, etc.

Fig. 2: jDem846 with the Living Mars project. Kevin Gill developed the Living Mars project [2] that included methods of computer graphics and planetary science. With the jDem846 tool, he created a visualization of the Mars (see Fig. 2) as could look with a living biosphere.

[^0]
Part 3: Strange Attractors: an evolution of dynamic systems

Case studies examine numerical modeling of chaotic dynamic systems (e.g., turbulence, weather forecast, and economic system development).
Lorenz's system bifurcations model convection in the Earth's atmosphere:

$$
\begin{align*}
& \mathrm{dx} / \mathrm{dt}=\mathrm{a}(\mathrm{y}-\mathrm{x}) \tag{1}\\
& \mathrm{dy} / \mathrm{dt}=\mathrm{x}(\mathrm{~b}-\mathrm{z})-\mathrm{y} \tag{2}\\
& \mathrm{dz} / \mathrm{dt}=\mathrm{xy}-\mathrm{cz} \tag{3}
\end{align*}
$$

Fig. 3: L-R: Solutions of the Lorenz system (Eqs. 1-3) for different values of the Rayleigh number $\mathrm{b}=12,16$, and 28 ; $\mathrm{a}=10, \mathrm{c}=8 / 3$.

The waterwheel (a physical model of the Lorenz's system) was built by P. Paultje for the Dutch Annual Physics Teacher Conference in 2005.

[^0]: [1] Guzdial, M. Introduction to Computing and Programming in Python: A Multimedia Approach. Upper Saddle River, NJ: Pearson, Prentice Hall, 2005.
 [2] Gill, K. M. Putting Life on Mars, Rivier Academic Journal, Vol. 9, No. 1, 2017, pp. 1-27.

