Assessment for Learning

161521930762

Views: 312

Abstract

For several decades now, assessment has become an increasingly pressing educational priority. Teacher and school accountability systems have come to be based on analysis of large-scale, standardized summative assessments. As a consequence, assessment now dominates most conversations about reform, particularly as a measure of teacher and school accountability for learner performance. Behind the often heated and at times ideologically gridlocked debate is a genuine challenge to address gaps in achievement between different demographically identifiable groups of students. There is an urgent need to lift whole communities and cohorts of students out of cycles of underachievement. For better or for worse, testing and public reporting of achievement is seen to be one of the few tools capable of clearly informing public policy makers and communities alike about how their resources are being used to expand the life opportunities. This learning is an overview of current debates about testing, and analyses the strengths and weaknesses of a variety of approaches to assessment. The module also focuses on the use of assessment technologies in learning. It will explore recent advances in computer adaptive and diagnostic testing, the use of natural language processing technologies in assessments, and embedded formative assessments in digital and online curricula. Other topics include the use of data mining and learning analytics in learning management systems and educational technology platforms. The module also considers issues of data access, privacy and the challenges raised by ‘big data’ including data persistency and student profiling. A final section addresses the processes of educational evaluation. Video presenters include Mary Kalantzis, Bill Cope, Luc Paquette and Jennifer Greene.